• <abbr id="uoc6q"><source id="uoc6q"></source></abbr>
    <abbr id="uoc6q"></abbr>
  • <dl id="uoc6q"><acronym id="uoc6q"></acronym></dl>

    芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態(tài)表面張力

    熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

    合作客戶/

    拜耳公司.jpg

    拜耳公司

    同濟大學

    同濟大學

    聯(lián)合大學.jpg

    聯(lián)合大學

    寶潔公司

    美國保潔

    強生=

    美國強生

    瑞士羅氏

    瑞士羅氏

    當前位置首頁 > 新聞中心

    水與瓦斯煤之間的表面張力計算方法及動態(tài)潤濕機理研究(三)

    來源: 煤炭學報 瀏覽 238 次 發(fā)布時間:2025-06-23

    4.含瓦斯煤與水之間接觸動態(tài)演化的微觀機制


    采用Materials studio分子動力學軟件中的Amorphous Cell功能,建立一個由150個wender無煙煤分子組成的煤盒子(圖10a),煤盒子的長和寬均為10 nm;然后創(chuàng)建一個與煤盒子等長/等寬的含有2層石墨烯的結構,通過Build layers功能將含有2層石墨烯的結構放置于煤分子上下兩側(cè)(圖10b);最后,通過不斷的壓縮、移動及結構優(yōu)化操作,將上下兩側(cè)的石墨烯結構刪除,獲得平整的煤表面模型(圖10c)。

    圖10平整的煤表面模型


    采用Sorption模塊對構建的平整的煤表面模型進行等溫吸附模擬,選擇的立場為COMPASSⅡ立場,分別獲得吸附平衡壓力0.5、1.5、2.5、3.5 MPa下的煤吸附瓦斯的構型(圖11);基于Amorphous Cell功能構建1個水盒子,通過Nanocluster功能構建1個直徑為6 nm水球,將該水球放置在煤吸附瓦斯的構型中,從而構成含瓦斯煤與水的分子結構模型,如圖12所示;對含瓦斯煤與水的分子結構模型進行結構優(yōu)化及分子動力學模擬,選擇COMPASSⅡ力場,系綜選擇NVT,溫度被設置為308.15 K,時間步長為1 fs,總模擬時間為500 ps。

    圖11不同瓦斯壓力條件下煤吸附瓦斯的構型

    圖12含瓦斯煤與水的分子結構模型


    為揭示水分在含瓦斯煤表面的微觀演化機制,選擇如下情況進行分析:瓦斯壓力為3.5 MPa條件下,模擬時間為100、250、500 ps時,煤與水分子的接觸結構模型進行對比,如圖13a所示;不同瓦斯壓力條件下,模擬時間為250 ps及500 ps時,煤與水分子的接觸結構模型進行對比,分別如圖13b—圖13c所示。

    圖13不同瓦斯壓力、時間條件下煤與水分子接觸結構模型


    通過對比瓦斯壓力為3.5 MPa條件下,模擬時間為100、250、500 ps時,煤與水分子接觸構型(圖13a)可以獲得如下規(guī)律:隨著時間的增加,水分子逐漸在煤表面鋪展,接觸面寬度逐漸增加,通過觀察圖13a中的區(qū)域A可以明顯發(fā)現(xiàn)此規(guī)律。通過對比同一瓦斯壓力、不同時間條件下,煤與水分子接觸構型(圖13b—圖13c)發(fā)現(xiàn):隨著時間的增加,煤與水分子之間的接觸角逐漸減小。綜合分析可知,在同一瓦斯壓力條件下,隨著時間的增加,水分逐漸在煤體表面鋪展,水與煤之間的接觸角逐漸減小。通過對比同一時間條件下(圖13b—圖13c)可知,隨著瓦斯壓力的增加,煤與水分子之間的接觸角逐漸增加,其原因是瓦斯壓力越大,水分子越不易在煤表面鋪展且不易進入煤中,水分越不容易潤濕煤。


    基于不同瓦斯壓力條件下、動力學模擬時間為500 ps時,煤與水分子的分子動力學模擬結果,對不同瓦斯壓力條件下水分子沿Z軸的相對濃度進行計算,即可獲得不同瓦斯壓力條件下,水分子的相對濃度(一定法向距離范圍,水分子數(shù)密度與系統(tǒng)內(nèi)水分子總數(shù)密度的比值)分布如圖14所示。

    圖14不同瓦斯壓力條件下水分子的相對濃度分布


    由圖14可知,在任意一個瓦斯壓力條件下,水分子濃度沿Z軸均會出現(xiàn)峰值點(1.825 nm),峰值點位于煤水交界面的上方,因為煤表面吸附有瓦斯,所以峰值點沒有出現(xiàn)在煤表面。在峰值點的左側(cè),同一距離處,水分子濃度隨著瓦斯壓力的增加而減小,說明瓦斯壓力越大,水分子越不易進入到煤中。在峰值點右側(cè)一定距離處(圖14過渡區(qū)域的左側(cè)),水分子濃度隨著瓦斯壓力的增加而減小,其說明瓦斯壓力越大,水分子越難在煤表面鋪展。然而,在圖14中過渡區(qū)域的右側(cè)一定范圍內(nèi),水分子濃度隨著瓦斯壓力的增加而增加,其說明瓦斯壓力越大,水分子越不易進入煤中,反而越易聚集。


    基于對前已述及的煤水界面能、煤的表面能及黏附功的動態(tài)演化規(guī)律,水滴在含瓦斯煤表面的演化特性及分子動力學模擬結果,分析可知:煤層瓦斯壓力越高,煤層注水后,水分鋪展的范圍越小,水分潤濕煤體的程度越低。因此,可將煤層增透措施與煤層注水措施聯(lián)合使用,首先,采取增透及抽采措施降低煤層瓦斯壓力;其次,進行煤層注水,增加煤體潤濕的范圍及程度,從而提高吸附態(tài)瓦斯被置換的程度,最終提升煤層瓦斯治理及預濕減塵的效果。


    5.結論


    1)水與瓦斯之間的表面張力與瓦斯壓力滿足負指數(shù)函數(shù)的關系,接觸角是關于瓦斯壓力及時間的函數(shù),其與時間負相關,與瓦斯壓力正相關。


    2)同一瓦斯壓力條件下,隨著潤濕時間的增加,煤水界面能逐漸減小,煤的表面能逐漸增加,黏附功逐漸增加;隨著瓦斯壓力的增加,煤水界面能變大,煤的表面能變小,黏附功變小,水分煤體表面鋪展的難度增加。


    3)隨著潤濕時間的增加,水滴輪廓最高點下降的高度逐漸增加,水滴與含瓦斯煤接觸面的寬度逐漸增加,水滴輪廓最高點下降的高度大于水滴與含瓦斯煤接觸面增加的寬度;瓦斯壓力越大,水滴輪廓最高點下降的高度越小,水滴與含瓦斯煤接觸面寬度增加的越小,其與分子動力學模擬獲得的含瓦斯煤?水之間的接觸演化規(guī)律一致。


    4)由于煤表面吸附有瓦斯,在煤水交界面的上方,水分子的濃度出現(xiàn)峰值點,在峰值點上方一定距離處,水分子濃度分布規(guī)律發(fā)生逆轉(zhuǎn),由水分子濃度隨著瓦斯壓力的減小而增加逆轉(zhuǎn)為隨著瓦斯壓力的增加而增加。


    5)對于高瓦斯煤層可將煤層增透措施與煤層注水措施聯(lián)合使用,首先,采取增透及抽采措施降低煤層瓦斯壓力;其次,進行煤層注水,增加煤體潤濕的范圍及程度,提升煤層瓦斯治理及預濕減塵的效果。


    国产做a爰片久久毛片| 99久久综合给久久精品| 久久精品a一国产成人免费网站 | 久久精品成人免费国产片小草| 久久久噜噜噜www成人网| 国内精品伊人久久久久| 国产精品久久久久一区二区| 久久狠狠爱亚洲综合影院| 亚洲成色www久久网站夜月| 精品久久久久久国产免费了| 久久亚洲AV成人无码国产最大| 97久久免费视频| 久久午夜免费鲁丝片| 精品999久久久久久中文字幕| 亚洲精品tv久久久久| 久久精品国产亚洲AV未满十八| 久久精品国产亚洲AV无码麻豆 | 亚洲色欲啪啪久久WWW综合网| 无码超乳爆乳中文字幕久久| 久久精品国产91久久麻豆自制| 久久久久无码专区亚洲av| 国产精品久久现线拍久青草| 久久一区二区三区精华液使用方法| 91精品婷婷国产综合久久| 久久久噜噜噜久久熟女AA片| 久久av老司机精品网站导航| 国产香蕉97碰碰久久人人| 国产农村妇女毛片精品久久 | 7777久久久国产精品消防器材| 国产精品美女久久久久av爽| 国产一区二区三区精品久久呦| 7777精品伊人久久久大香线蕉| 亚洲欧美日韩综合久久久| 麻豆久久久9性大片| 性刺激久久久久久久久| 亚洲人成网站18禁止久久影院| 久久亚洲精品无码aⅴ大香| 久久精品国产免费观看三人同眠| 2021国内精品久久久久精免费| 97久久免费视频| 久久久久久免费视频|