合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 基于最大氣泡壓力法測(cè)量液態(tài)鋰的密度和表面張力
> 探索界面張力梯度驅(qū)動(dòng)對(duì)流轉(zhuǎn)捩規(guī)律
> 原油中活性物質(zhì)與堿作用下對(duì)界面張力的影響
> 各種表面活性劑性能大全
> 表面能和表面張力關(guān)系,如何降低表面張力
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(一)
> 氨基改性硅油柔軟劑的表面張力、透水率、分層測(cè)試(一)
> 溫度對(duì)甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(二)
> 基于藥液表面張力測(cè)定估算蘋(píng)果樹(shù)最大施藥液量的方法(四)
> 表面張力儀測(cè)試添加消泡劑后起泡液、水性丙烯酸膠黏劑的變化(二)
推薦新聞Info
-
> 無(wú)機(jī)鹽濃度對(duì)HPAM不同復(fù)配體系降低界面張力能力的影響(二)
> 無(wú)機(jī)鹽濃度對(duì)HPAM不同復(fù)配體系降低界面張力能力的影響(一)
> 烷基二甲苯磺酸鹽表面活性劑界面張力、界面性能測(cè)定
> 不同溫度對(duì)氫氟醚HFE7000、HFE7200表面張力和黏度影響(二)
> 不同溫度對(duì)氫氟醚HFE7000、HFE7200表面張力和黏度影響(一)
> R1336mzz(Z))純質(zhì)與POE潤(rùn)滑油組成的混合物的表面張力測(cè)定
> Sb合金元素對(duì)鋅液與X80鋼表面張力、潤(rùn)濕性及界面反應(yīng)的影響——結(jié)果與分析
> Sb合金元素對(duì)鋅液與X80鋼表面張力、潤(rùn)濕性及界面反應(yīng)的影響——實(shí)驗(yàn)
> 液氫、液氧等低溫推進(jìn)劑表面張力與內(nèi)角自流現(xiàn)象的關(guān)系
> 高沸點(diǎn)表面活性劑對(duì)納米LiBr溶液表面張力沸騰溫度的影響(下)
表面張力輔助制造陶瓷厚膜,突破傳統(tǒng)陶瓷膜制備方法的局限
來(lái)源: 瀏覽 540 次 發(fā)布時(shí)間:2025-02-18
在材料科學(xué)的廣闊領(lǐng)域中,一項(xiàng)創(chuàng)新技術(shù)的出現(xiàn)往往能夠引領(lǐng)整個(gè)行業(yè)的變革。近年來(lái),表面張力輔助制造陶瓷厚膜的技術(shù)以其獨(dú)特的優(yōu)勢(shì)和廣泛的應(yīng)用前景,吸引了眾多科研人員的關(guān)注。這項(xiàng)技術(shù)不僅突破了傳統(tǒng)陶瓷膜制備方法的局限,還為高性能陶瓷膜的制造開(kāi)辟了新的道路。
表面張力,這一物理現(xiàn)象,是液體分子間相互作用力的體現(xiàn),它使得液體表面趨于最小化。當(dāng)液體處于靜止?fàn)顟B(tài)時(shí),表面張力會(huì)使液面呈現(xiàn)出一種類(lèi)似薄膜的狀態(tài)。正是基于這一原理,科研人員開(kāi)發(fā)出了表面張力輔助制造陶瓷厚膜的新方法。該方法的核心在于利用液體表面張力將液相前驅(qū)體限制在懸浮的網(wǎng)格內(nèi),形成懸浮液橋,從而實(shí)現(xiàn)膜材料內(nèi)部應(yīng)力的消除,突破傳統(tǒng)制備方法的厚度極限。
傳統(tǒng)的陶瓷膜制備方法,如絲網(wǎng)印刷或噴涂技術(shù),雖然在一定程度上能夠?qū)崿F(xiàn)陶瓷膜的制備,但在厚度控制、裂紋防止以及材料性能保持等方面存在諸多挑戰(zhàn)。特別是當(dāng)膜厚度達(dá)到某一臨界值時(shí),由于薄膜與基底之間的應(yīng)力不匹配,往往會(huì)導(dǎo)致裂紋的產(chǎn)生,嚴(yán)重影響膜材料的性能和應(yīng)用。而表面張力輔助制造方法則通過(guò)避免基底對(duì)膜材料的應(yīng)力影響,有效解決了這一問(wèn)題。
在該方法中,毛細(xì)管力被巧妙地用來(lái)將純相液體膠體膜懸浮在基底上方。通過(guò)蒸發(fā)、干燥和燒結(jié)過(guò)程,懸浮的膜發(fā)生相變,形成致密的陶瓷厚膜。由于整個(gè)過(guò)程中膜材料不與基底直接接觸,因此避免了基底材料對(duì)其產(chǎn)生的應(yīng)力影響。這一創(chuàng)新策略不僅使得膜材料能夠在無(wú)應(yīng)力狀態(tài)下自由收縮和擴(kuò)展,還有效防止了裂紋的形成。
研究團(tuán)隊(duì)以壓電陶瓷膜為例,成功實(shí)現(xiàn)了厚度范圍從1到100微米的無(wú)裂紋壓電陶瓷厚膜的陣列化制造。這一成果不僅展示了表面張力輔助制造方法在厚度控制方面的卓越能力,還揭示了其在高性能陶瓷膜制備方面的巨大潛力。壓電陶瓷膜作為一種具有壓電效應(yīng)的功能材料,在超聲聚焦換能器、傳感器以及微型機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。通過(guò)表面張力輔助制造方法制備的壓電陶瓷膜,不僅保持了高密度和無(wú)裂紋的特性,還展現(xiàn)了與塊體陶瓷相當(dāng)?shù)膲?
電性能。這一突破意味著,未來(lái)的電子設(shè)備中,我們可以期待更加微型化、高效能且可靠的壓電組件。例如,在醫(yī)療設(shè)備中,微型超聲換能器利用這種高性能的壓電陶瓷膜,可以實(shí)現(xiàn)更精確的體內(nèi)成像和無(wú)創(chuàng)治療;在環(huán)境監(jiān)測(cè)領(lǐng)域,高靈敏度的傳感器則能實(shí)時(shí)捕捉空氣質(zhì)量、水質(zhì)等關(guān)鍵數(shù)據(jù),提升環(huán)境保護(hù)的效率;而在智能科技前沿,裝備了這種陶瓷膜的微型機(jī)器人,將擁有更強(qiáng)的環(huán)境適應(yīng)性和操控精度,探索更多未知領(lǐng)域。
此外,表面張力輔助制造技術(shù)的靈活性和可擴(kuò)展性,也為其他類(lèi)型高性能陶瓷膜的研發(fā)開(kāi)辟了道路,如耐高溫、耐腐蝕或具有特定光學(xué)特性的陶瓷膜。隨著對(duì)該技術(shù)的深入研究和不斷優(yōu)化,未來(lái)有望見(jiàn)證更多基于這一原理的創(chuàng)新應(yīng)用,推動(dòng)材料科學(xué)乃至整個(gè)工業(yè)領(lǐng)域的革新與發(fā)展。科研人員正滿懷期待地探索這一技術(shù)的邊界,相信不久的將來(lái),表面張力輔助制造技術(shù)將為人類(lèi)社會(huì)帶來(lái)更多顛覆性的科技成果。