• <abbr id="uoc6q"><source id="uoc6q"></source></abbr>
    <abbr id="uoc6q"></abbr>
  • <dl id="uoc6q"><acronym id="uoc6q"></acronym></dl>

    芬蘭Kibron專注表面張力儀測(cè)量技術(shù),快速精準(zhǔn)測(cè)量動(dòng)靜態(tài)表面張力

    熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

    合作客戶/

    拜耳公司.jpg

    拜耳公司

    同濟(jì)大學(xué)

    同濟(jì)大學(xué)

    聯(lián)合大學(xué).jpg

    聯(lián)合大學(xué)

    寶潔公司

    美國(guó)保潔

    強(qiáng)生=

    美國(guó)強(qiáng)生

    瑞士羅氏

    瑞士羅氏

    當(dāng)前位置首頁(yè) > 新聞中心

    絲素蛋白作為表面活性劑實(shí)現(xiàn)納米級(jí)設(shè)備的水基加工

    來(lái)源:絲素研究院 瀏覽 922 次 發(fā)布時(shí)間:2024-08-27

    水基加工在電子學(xué)、材料科學(xué)和生命科學(xué)等高科技領(lǐng)域至關(guān)重要,對(duì)提升設(shè)備質(zhì)量、制造效率、安全性和可持續(xù)性有顯著影響。水作為連接生物與技術(shù)系統(tǒng)的獨(dú)特橋梁,然而其高表面張力限制了生物納米界面的潤(rùn)濕和制造,帶來(lái)了根本性挑戰(zhàn)。本文提出使用絲素蛋白作為表面活性劑,成功實(shí)現(xiàn)了納米級(jí)設(shè)備的水基加工。即使在極低濃度(如0.01 w/v%)下,絲素蛋白也能顯著提高表面覆蓋率,優(yōu)于傳統(tǒng)表面活性劑。這得益于其兩親性及對(duì)不同表面能基質(zhì)的適應(yīng)性吸附,促進(jìn)了材料間的分子相互作用。通過(guò)制造晶體管和光伏電池等水處理納米器件,我們展示了這種方法的多功能性,其性能與傳統(tǒng)真空處理設(shè)備相當(dāng),彰顯了水基納米制造的實(shí)用性與廣泛適用性。


    一、絲素蛋白作為天然表面活性劑


    絲素蛋白(SF)具有復(fù)雜的多嵌段共聚物結(jié)構(gòu),由多種氨基酸組成,表現(xiàn)出兩親性(圖1a),功能類似于合成表面活性劑,能夠改變水基溶液的熱力學(xué)能量狀態(tài)(圖1b)。研究通過(guò)控制脫膠時(shí)間和溶液濃度,定量分析了SF在不同表面能基底上的潤(rùn)濕性(圖1c,d)。脫膠時(shí)間控制在5至120分鐘,得到不同分子量的SF溶液。煮沸少于30分鐘的SF鏈主要由分子量在350至200 kDa的長(zhǎng)鏈絲素蛋白(LCF)組成,30至120分鐘則為200至70 kDa的短鏈絲素蛋白(SCF)。含0.003 w/v%LCF的水溶液可覆蓋90%以上的裸SiO2/Si基底,覆蓋率隨濃度增加。LCF在提高潤(rùn)濕性時(shí),旋涂覆蓋率與分子量無(wú)關(guān),但與SF濃度相關(guān);SCF則需0.02 w/v%或更高濃度才能實(shí)現(xiàn)高覆蓋率。此結(jié)果表明SF可能通過(guò)直接吸附在界面上,調(diào)控潤(rùn)濕性,且分子量與濃度顯著影響其吸附行為。

    圖1作為天然表面活性劑的SF。b,旋轉(zhuǎn)涂層金屬水合物提高表面覆蓋率的示意圖。金屬水合物溶液的表面覆蓋率的示意圖。c,d,添加了SF的金屬水溶液的表面覆蓋率(%)。的表面覆蓋率(%)。基底(c)和基底上的表面覆蓋率(%)。基底(d)上SF添加的金屬水溶液的表面覆蓋率(%)與濃度和分子量的函數(shù)關(guān)系。


    二、使用絲綢表面活性劑進(jìn)行高效界面能量控制的表面活性劑


    從熱力學(xué)角度來(lái)看,潤(rùn)濕是液體在固體表面擴(kuò)展以最小化自由能的現(xiàn)象。液體在固體上的潤(rùn)濕性可通過(guò)界面能和粘附功來(lái)評(píng)估,分別由楊氏方程和粘附功方程表示。本文評(píng)估了含絲素蛋白(SF)溶液在疏水性基底上的表面張力和接觸角(CA)變化,使用煮沸30分鐘的SF(SF30)。結(jié)果顯示,盡管SF30溶液的表面張力變化與對(duì)照組相似,但其接觸角顯著降低(補(bǔ)充圖2),表明潤(rùn)濕增強(qiáng)主要通過(guò)改變液-固界面能實(shí)現(xiàn),而非降低溶液表面張力。圖2a顯示,SF摻雜溶液與固體表面之間的界面能顯著降低,圖2b顯示界面粘附力增加。與六種商用表面活性劑相比,盡管它們有效降低了溶液表面張力,但對(duì)界面能的控制不及SF(圖2c,d)。SF30在疏水性基底上的表面覆蓋率超過(guò)90%,且優(yōu)于分子量相近的合成表面活性劑(延伸數(shù)據(jù)圖1)。

    圖2利用絲表面活性劑進(jìn)行高效的界面能控制。水溶液中SF在水溶液中的界面張力(a)和粘附功(b)的隨時(shí)間變化。(d)與其他商用和最先進(jìn)表面活性劑的比較。表面活性劑。在a和b中,數(shù)據(jù)點(diǎn)和誤差條表示平均值±標(biāo)準(zhǔn)偏差(s.d.標(biāo)準(zhǔn)偏差(s.d.)(樣本量為4),直線表示線性回歸。在c和d中,點(diǎn)表示數(shù)據(jù)點(diǎn)。色條和誤差條顯示平均值±標(biāo)準(zhǔn)差(樣本量3)


    三、絲在薄膜-基底界面上的自適應(yīng)吸附作用界面


    圖3a展示了絲素蛋白(SF)在不同能量表面上的吸附機(jī)制。我們假設(shè),SF中的疏水域優(yōu)先與非極性表面相互作用,而親水域則朝向溶液,導(dǎo)致SF在疏水界面的富集。為驗(yàn)證這一假設(shè),我們將含SF的銦前驅(qū)體溶液涂覆在不同表面能的基底上,并通過(guò)X射線光電子能譜(XPS)和原子力顯微鏡(AFM)分析薄膜的表面化學(xué)成分和形貌。XPS結(jié)果顯示,蛋白質(zhì)信號(hào)主要集中在SF摻雜的金屬氧化物薄膜與基底界面處,且當(dāng)SF濃度超過(guò)0.3 w/v%時(shí),界面處出現(xiàn)明顯的N1s信號(hào),表明SF吸附效率與表面能有關(guān)(圖3b,c)。此外,SF的分子量對(duì)吸附效率有影響,分子量較低時(shí)N1s信號(hào)較弱。在高極性表面上,SF信號(hào)在整個(gè)薄膜中分布,說(shuō)明吸附過(guò)程中SF未從整體中分離。AFM分析表明,高濃度SF在疏水性基底上形成了平坦的吸附結(jié)構(gòu),而在等離子處理的基底上形成了島狀聚集體(圖3d)。這些結(jié)果表明,SF通過(guò)自適應(yīng)吸附機(jī)制顯著提高了潤(rùn)濕性,使得在不同表面上快速形成高質(zhì)量的金屬氧化物薄膜成為可能。

    圖3絲綢表面活性劑在薄膜-固體界面的自適應(yīng)吸附。a,表面活性劑在涂覆過(guò)程中的自分離示意圖。b,XPS深度剖面化學(xué)成分分析厚度為25納米的In2 O3薄膜的化學(xué)成分分析。數(shù)據(jù)c,N1s在In2O3薄膜中的N1s分布。SF沉積在具有不同自由表面能的基底上的In2 O3薄膜中的N1s分布。白色虛線線表示與二氧化硅d,通過(guò)選擇性蝕刻金屬氧化物獲得的埋藏SF層的高度和偏轉(zhuǎn)AFM圖,通過(guò)選擇性蝕刻金屬氧化物獲得(比例尺,1μm;Ra,平均值;Ra,算術(shù)平均粗糙度)。


    四、利用絲素蛋白的水納米技術(shù)表面活性劑


    圖4展示了在疏水表面上進(jìn)行水基納米器件制造及其性能表征。研究發(fā)現(xiàn),絲素蛋白(SF)對(duì)器件性能影響極小,因其在膜-基底界面的自分離特性,確保了電子材料的功能性和膜的高質(zhì)量。在銦鎵鋅氧化物(IGZO)晶體管通道中加入高達(dá)0.03 w/v%的SF,對(duì)器件的傳輸特性幾乎沒(méi)有影響,遷移率保持在1至10 cm2/V·s,SF濃度達(dá)到0.1 w/v%或更高時(shí),才有所下降。在疏水性FOTS處理表面上制造的晶體管,遷移率仍維持在~1 cm2/V·s,SF吸附在膜-基底界面形成的絕緣層可能導(dǎo)致電容耦合減弱,但未引入傳輸曲線中的遲滯或次閾擺幅惡化等非理想特性。此外,SF表面活性劑應(yīng)用于介電材料涂層,表現(xiàn)出良好的電學(xué)性能。MAPbI3和NiO基光電薄膜在疏水性硅基底上展示了光響應(yīng)行為,表明SF在水基納米制造中具有廣泛應(yīng)用潛力,尤其在生物傳感器和下一代生物醫(yī)學(xué)設(shè)備中,其生物兼容性和環(huán)保性將帶來(lái)顯著優(yōu)勢(shì)。

    圖4使用絲表面活性劑的水激活納米器件。基于IGZO:SF的場(chǎng)效應(yīng)晶體管(FET)。中間:用不同的晶體管的轉(zhuǎn)移曲線。右圖:不同SF晶體管的電荷遷移率。數(shù)據(jù)點(diǎn)和誤差條顯示平均值±s.d.(樣本數(shù)為3)。以及制備的MAPbI3的薄膜的I-V特性。d,基于NiO:SF的光電探測(cè)器的結(jié)構(gòu)(左)和在不同側(cè)向電壓(中)和時(shí)間(右)下的光探測(cè)器的結(jié)構(gòu)(左)及其在白光照明下的I-V特性(右)。(右圖)。所有器件都是在疏水性基底上制造的SF基絕緣體的結(jié)構(gòu)(左)及其電流密度-電場(chǎng)曲線。


    結(jié)論


    本研究重新詮釋了再生絲素蛋白(SF)的分子結(jié)構(gòu),提出其作為水基納米器件制造的通用潤(rùn)濕劑。表面覆蓋率和界面能量分析的實(shí)驗(yàn)證據(jù)表明,即使在低于0.01 w/v%的濃度下,SF也能顯著提高疏水表面的潤(rùn)濕性,擴(kuò)展了水基處理的應(yīng)用范圍。原子級(jí)別的表面分析揭示了SF的自適應(yīng)吸附行為,這是其增強(qiáng)潤(rùn)濕性的關(guān)鍵因素。這種天然表面活性劑使得無(wú)需進(jìn)行表面預(yù)處理即可實(shí)現(xiàn)水基納米器件的制造,簡(jiǎn)化了生產(chǎn)過(guò)程,減少了對(duì)復(fù)雜或有毒化學(xué)品的需求。


    久久精品免费电影| 国内精品久久人妻无码不卡| 久久精品无码一区二区三区日韩| 久久天天躁夜夜躁狠狠躁2022 | 2021久久国自产拍精品| 久久中文字幕一区二区| 亚洲国产香蕉人人爽成AV片久久| 精品久久8x国产免费观看| 久久精品亚洲视频| 久久综合久久鬼色| 日韩久久久久中文字幕人妻| 久久精品中文字幕大胸| 99久久亚洲精品无码毛片| 久久精品动漫一区二区三区| 国内精品久久久久久久久电影网 | 四虎免费久久影院| 午夜精品久久久久成人| 久久精品中文闷骚内射| 久久久久亚洲精品美女| 少妇人妻综合久久中文字幕| 国产农村妇女毛片精品久久| 国产精品久久久精品三级| 欧美精品久久天天躁| 国产色丁香久久综合| 久久婷婷国产剧情内射白浆 | 久久综合国产乱子伦精品免费| 国内精品久久久久影院一蜜桃| 久久精品亚洲福利| 国产成人久久精品二区三区| 国产99久久久久久免费看| 国产精品久久久久毛片真精品| 色偷偷色噜噜狠狠网站久久| 亚洲精品美女久久7777777| 国产精品久久久香蕉| 久久笫一福利免费导航| 2020久久精品国产免费| 偷窥少妇久久久久久久久| 69SEX久久精品国产麻豆| 亚洲精品乱码久久久久久蜜桃图片 | 亚洲国产精品人久久电影| 精品熟女少妇av免费久久|