合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 什么是納米氣泡?納米氣泡特征及制備方法
> 土壤裂隙發(fā)育過程中氣—液界面張力因素
> 泡沫豐富和清潔力好是一回事嗎?
> 辛酸異戊酯替代白油制備壓裂液用增稠劑可行性研究
> 表面張力儀的行業(yè)應(yīng)用13條
> 納米沸石咪唑酯骨架ZIF-8顆粒的油水界面張力和接觸角測定及巖心驅(qū)替實(shí)驗(yàn)——摘要、材料與方法
> 鼠李糖脂生物表面活性劑在液-固界面上的潤濕改性微觀機(jī)制研究(二)
> 什么是?LB膜分析儀?LB膜分析儀的工作原理及作用
> 引氣劑的界面活性作用與使用注意事項(xiàng)
> 界面張力對低滲親水巖心自發(fā)滲吸的影響因素
推薦新聞Info
-
> 基于水煤漿流變性和動(dòng)態(tài)表面張力觀察水煤漿的微觀破裂特性(三)
> 基于水煤漿流變性和動(dòng)態(tài)表面張力觀察水煤漿的微觀破裂特性(二)
> 基于水煤漿流變性和動(dòng)態(tài)表面張力觀察水煤漿的微觀破裂特性(一)
> 免罩光水性素色面漆配方、制備方法及步驟
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(三)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(二)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(一)
> 電場處理水浮力、及與普通水的表面張力系數(shù)測定
> 軟物質(zhì)褶皺形成機(jī)制新發(fā)現(xiàn):液體浸潤、表面張力與接觸線釘扎效應(yīng)
> LB膜技術(shù)在界面相互作用研究中的應(yīng)用
基于水煤漿流變性和動(dòng)態(tài)表面張力觀察水煤漿的微觀破裂特性(三)
來源: 華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版) 瀏覽 28 次 發(fā)布時(shí)間:2025-07-14
2.3水煤漿的微觀破裂特性
與純液體不同,由于漿體液固混合物流變性和屈服應(yīng)力等參數(shù)的影響,漿體破裂過程更加復(fù)雜。在漿體破裂末期,當(dāng)水煤漿液橋的喉部直徑(Dm,如圖6所示)尺寸很小時(shí),固體顆粒將會(huì)發(fā)揮顯著影響。典型水煤漿破裂實(shí)驗(yàn)照片如圖7所示,由于微觀破裂條件下液固出現(xiàn)部分分離,煤粉顆粒在液橋喉部附近凸出氣液界面,使得原本光滑的水煤漿表面逐漸粗糙,其變化特性與水煤漿黏度、表面張力和屈服應(yīng)力等參數(shù)密切相關(guān)。
圖6水煤漿喉部直徑示意圖
圖7典型水煤漿破裂實(shí)驗(yàn)照片(w=60%,華電煤)
利用Imagej圖像處理軟件對液橋喉部直徑的變化情況進(jìn)行了測量,重復(fù)3次后的實(shí)驗(yàn)測量結(jié)果如圖8所示。
圖8水煤漿喉部直徑隨時(shí)間變化關(guān)系(不同顏色表示不同實(shí)驗(yàn)結(jié)果)
由圖8可知,喉部直徑隨破裂過程特征時(shí)間(tp?t)呈冪函數(shù)形式變化,其中tp為水煤漿喉部發(fā)生破裂的時(shí)間,tr為實(shí)際時(shí)間。結(jié)合圖7和圖8分析可知,在水煤漿破裂初始階段,漿體界面仍比較光滑。隨著破裂的發(fā)展,當(dāng)喉部直徑收縮至2 mm左右(10倍顆粒直徑)時(shí),可以認(rèn)為是進(jìn)入了微觀破裂區(qū),顆粒直徑在這個(gè)尺度區(qū)間對流體的影響較大,會(huì)阻礙流體的流動(dòng)和變形,此時(shí)漿體界面會(huì)粗糙不平,浮現(xiàn)出固體顆粒。
在水煤漿破裂過程中,隨著液橋喉部直徑的減小,其變形速率加快。喉部的剪切速率(r)與局部水煤漿速度梯度(du/dy)有關(guān),其關(guān)系可以近似表示為
(3)
借鑒文獻(xiàn)中對黏性流體喉部破裂的研究結(jié)果,有如下關(guān)系式:
(4)
公式(4)是文獻(xiàn)基于Navier-Stokes方程推導(dǎo)出的黏性流體破裂的理論模型,為了增強(qiáng)其適用性,本文通過水煤漿流變性和動(dòng)態(tài)表面張力修正,使其適用于水煤漿微觀破裂。通過分析水煤漿破裂實(shí)驗(yàn)結(jié)果,采用式(3)計(jì)算漿體喉部剪切速率,結(jié)合水煤漿流變性(式(1))和動(dòng)態(tài)表面張力(式(2)),最終獲得擬合關(guān)系式如下:
(5)
圖9所示為不同條件下水煤漿喉部直徑實(shí)驗(yàn)值(Dm,EXP)和擬合值(Dm,pre)對比。從式(5)和圖9可以看出:影響水煤漿喉部破裂特性的主要參數(shù)包括動(dòng)態(tài)表面張力、黏度、屈服應(yīng)力等;在不同煤種和水煤漿質(zhì)量分?jǐn)?shù)條件下,水煤漿破裂末期的喉部直徑變化趨勢保持一致,表明水煤漿微觀破裂過程具有一定的相似特性。
圖9不同條件下水煤漿喉部直徑實(shí)驗(yàn)值與擬合值對比
3結(jié)論
以神華煤和華電煤為煤種制備了質(zhì)量分?jǐn)?shù)為58%~62%的水煤漿,使用旋轉(zhuǎn)流變儀、靜/動(dòng)態(tài)表面張力儀、高速攝像機(jī)和圖像處理軟件等研究了水煤漿理化參數(shù)對其微觀破裂過程的影響,得到的主要結(jié)論如下:
(1)所制備的水煤漿均為剪切變稀的非牛頓流體。在剪切速率小于1 s?1區(qū)間,水煤漿濃度對漿體黏度有顯著影響,濃度越大漿體黏度越大,且剪切變稀特性明顯;當(dāng)剪切速率大于1 s?1時(shí),水煤漿濃度對漿體黏度影響相對減弱,且隨著剪切速率的增加,漿體黏度變化較小。采用Herschel-Bulkley模型建立了水煤漿流變關(guān)系式為:
(2)不同煤種和濃度條件下水煤漿的動(dòng)態(tài)表面張力變化情況比較一致,水煤漿的動(dòng)態(tài)表面張力隨著特征氣泡時(shí)間的增加先減小后增加,在氣泡特征時(shí)間200 ms附近出現(xiàn)最小值;水煤漿的動(dòng)態(tài)表面張力與靜態(tài)表面張力存在顯著差異,在氣泡特征時(shí)間較小或較大時(shí),動(dòng)態(tài)表面張力均大于靜態(tài)表面張力。
(3)在水煤漿微觀破裂過程中,當(dāng)破裂末期喉部直徑很小時(shí),會(huì)出現(xiàn)煤粉顆粒和液體的部分分離,顆粒在液橋喉部附近凸出氣液界面,使得原本光滑的水煤漿表面逐漸粗糙。水煤漿喉部直徑變化主要受到漿體黏度、表面張力和屈服應(yīng)力等參數(shù)影響,喉部直徑隨破裂過程特征時(shí)間變化表現(xiàn)為冪函數(shù)形式,其表達(dá)式為
符號說明:
D——液滴直徑,μm
Dm——喉部直徑,mm
D32——索特平均直徑,μm
D43——德布魯克平均直徑,μm
——速度梯度,s?1
K——稠度系數(shù),Pa·sn
N——液滴數(shù)量
n——流變指數(shù)
t——?dú)馀輹r(shí)間,ms
tp——水煤漿喉部發(fā)生破裂時(shí)刻,ms
——水煤漿黏度,Pa·s
——屈服應(yīng)力,Pa
——剪切速率,s?1
σ——液體表面張力,mN/m