• <abbr id="uoc6q"><source id="uoc6q"></source></abbr>
    <abbr id="uoc6q"></abbr>
  • <dl id="uoc6q"><acronym id="uoc6q"></acronym></dl>

    芬蘭Kibron專注表面張力儀測量技術(shù),快速精準(zhǔn)測量動靜態(tài)表面張力

    熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

    合作客戶/

    拜耳公司.jpg

    拜耳公司

    同濟(jì)大學(xué)

    同濟(jì)大學(xué)

    聯(lián)合大學(xué).jpg

    聯(lián)合大學(xué)

    寶潔公司

    美國保潔

    強生=

    美國強生

    瑞士羅氏

    瑞士羅氏

    當(dāng)前位置首頁 > 新聞中心

    溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(一)

    來源:化工學(xué)報 瀏覽 253 次 發(fā)布時間:2025-05-13

    在超臨界態(tài)CO2封存于深部鹽水層過程中,溫度、壓強等控制條件是影響封存效率和封存量的重要因素。應(yīng)用分子動力學(xué)模擬的方法對343~373 K和6~35 MPa范圍內(nèi)的CO2-NaCl鹽水系統(tǒng)進(jìn)行了界面張力(IFT)及界面特性的研究,分析了IFT隨溫度及壓強的變化關(guān)系,并觀測到了壓力平衡點pplateau;從分子尺度(物質(zhì)密度、界面過余量、界面水合物密度)分析了IFT隨壓強、溫度的變化,以及pplateau產(chǎn)生的原因。結(jié)果表明,pplateau前壓強升高或溫度降低將導(dǎo)致CO2密度升高,IFT下降,而pplateau后IFT趨于穩(wěn)定且受溫度影響較?。籆O2的界面過余量及界面處水合物數(shù)量隨壓強及溫度變化,與IFT的變化相反;高壓下界面水合物密度的飽和現(xiàn)象可能是pplateau產(chǎn)生的重要原因。


    引言


    深部鹽水層CO2地質(zhì)封存所需的注射能耗及最大地質(zhì)埋存深度與CO2-鹽水之間的界面張力(interfacial tension,IFT)直接相關(guān),并受溫度和壓強的制約。開展溫度、壓強對CO2-鹽水間界面張力的影響研究,不僅可以分析IFT隨溫度、壓強等控制參數(shù)的變化規(guī)律,還能闡述溫度、壓強對IFT產(chǎn)生影響的內(nèi)在機理進(jìn)而對指導(dǎo)不同環(huán)境條件(溫度、壓強)下的CO2地質(zhì)封存設(shè)計,提高注射安全性及存儲容量具有重大意義。


    目前實驗已測定相關(guān)儲層條件下CO2-水和CO2-鹽水系統(tǒng)的IFT值,并觀測到IFT在定溫條件下會隨著壓強升高而降低,并在壓力平衡點pplateau之后趨于穩(wěn)定值。實驗還發(fā)現(xiàn)pplateau的大小與鹽的種類及鹽度無明顯聯(lián)系,僅隨溫度升高而上升。Chalbaud等將pplateau的存在歸因于CO2溶解度的影響,但尚未展開深入分析。


    分子動力學(xué)模擬(molecular dynamics simulation,MD模擬)可以研究多相界面系統(tǒng)的微觀特性,目前該方法已成功模擬了CO2-水及CO2-鹽水系統(tǒng),可獲得與實驗一致的IFT值,并能觀測界面的微觀現(xiàn)象,是一種有效的研究手段。


    本文應(yīng)用MD模擬方法,對343~373 K和6~35 MPa范圍內(nèi)的CO2-NaCl系統(tǒng)進(jìn)行計算,分析了體相及界面各物質(zhì)性質(zhì)隨環(huán)境條件的變化規(guī)律,包括CO2的密度、CO2的界面過余量、界面處CO2水合物數(shù)量等,探討了IFT對溫度及壓強依賴關(guān)系的物理機理,尤其對pplateau現(xiàn)象的產(chǎn)生原因進(jìn)行了分析,可為IFT的控制和預(yù)測提供理論依據(jù)。


    1研究對象及方法


    1.1對象及模型


    本文根據(jù)Chalbaud等對CO2-NaCl系統(tǒng)大范圍溫度及壓強下的IFT實驗研究結(jié)果,選擇了溫度及壓強范圍為343~373 K和6~35 MPa的CO2-NaCl系統(tǒng)為研究對象。具體工況參數(shù)列于表1。

    表1 CO2-NaCl系統(tǒng)的溫度和壓強條件


    在計算過程中,綜合考慮了系統(tǒng)內(nèi)分子間非鍵結(jié)作用力(范德華力、庫倫靜電力)及分子內(nèi)鍵結(jié)作用力(鍵拉伸和鍵彎曲)。分別采用Lennard-Jones勢能函數(shù)模擬范德華力,庫侖定律模擬庫侖靜電力,具體分子間勢能函數(shù)如式(1)所示

    其中,rij為原子i與j之間的距離;εij為勢能阱的深度,εij(εiiεjj)1/2;σij為兩體互相作用的勢能為零時的距離,σij(σiiσjj)1/2;ε0為真空介電常數(shù);qi及qj為原子i與j所帶電荷量。其中采用PME技術(shù)模擬分子間長程庫侖作用力,范德華作用截距設(shè)定為0.9 nm。此外,本文采用諧波勢能函數(shù)模擬鍵拉伸和鍵角彎曲等分子內(nèi)鍵結(jié)作用力。

    圖1 CO2-NaCl系統(tǒng)平衡狀態(tài)

    本文計算中,水分子選擇柔性F3C模型,CO2選擇柔性EPM2模型,鹽離子采用Chandrasekhar等開發(fā)的模型。應(yīng)用MD軟件Gromacs4.5并采用周期性邊界條件進(jìn)行計算,所建立的橫截面4 nm×4 nm的計算域示于圖1。計算域中間區(qū)域為鹽水,包括4323個水分子、147個Na+和147個Cl-,對應(yīng)鹽度為1.89 mol·L-1,兩側(cè)分別為732個CO2分子。利用Berendsen方法來實現(xiàn)溫度和壓強的設(shè)定。由于系統(tǒng)在NPzT系綜下20 ns達(dá)平衡態(tài),故模擬時間運行30 ns,選取最后5 ns為有效數(shù)據(jù)進(jìn)行分析。

    色综合久久无码五十路人妻| 青草久久久国产线免观| 国产精品毛片久久久久久久| 精品久久国产字幕高潮| a级毛片无码免费真人久久| 99久久精品国产免费| 一本久久综合亚洲鲁鲁五月天| 久久国产精品成人免费| 99久久99久久久精品齐齐| 久久综合伊人77777麻豆| 久久亚洲精品无码VA大香大香| 精品久久久久久国产三级| 日韩av无码久久精品免费| 久久99国产精品一区二区| 国产成人精品久久亚洲| 久久99热只有频精品8| 狠狠综合久久综合中文88| 国产日产久久高清欧美一区| 久久无码无码久久综合综合 | 亚洲国产成人久久综合碰碰动漫3d | MM1313亚洲精品无码久久| 2022麻豆福利午夜久久| 久久99精品视免费看| 亚洲国产精品无码久久久久久曰| 亚洲午夜无码毛片av久久京东热| 久久综合九色综合97手机观看| 久久中文字幕无码专区| 久久996热精品xxxx| 一级A毛片免费观看久久精品| 精品久久久久亚洲| 九九99久久精品国产| 性高湖久久久久久久久| 久久久91精品国产一区二区| 久久美女人爽女人爽| 久久综合久久综合久久| 国产91久久综合| 国产成人AV综合久久| 精品无码人妻久久久久久| 久久人人爽人爽人人爽av | 国产热re99久久6国产精品 | 2020久久精品国产免费|