• <abbr id="uoc6q"><source id="uoc6q"></source></abbr>
    <abbr id="uoc6q"></abbr>
  • <dl id="uoc6q"><acronym id="uoc6q"></acronym></dl>

    芬蘭Kibron專注表面張力儀測量技術(shù),快速精準測量動靜態(tài)表面張力

    熱線:021-66110810,56056830,66110819,66110690,13564362870 Email: info@vizai.cn

    合作客戶/

    拜耳公司.jpg

    拜耳公司

    同濟大學

    同濟大學

    聯(lián)合大學.jpg

    聯(lián)合大學

    寶潔公司

    美國保潔

    強生=

    美國強生

    瑞士羅氏

    瑞士羅氏

    當前位置首頁 > 新聞中心

    壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗結(jié)果與討論

    來源:化工學報 瀏覽 844 次 發(fā)布時間:2024-07-31

    2實驗結(jié)果與討論

    本研究測定了CO2-環(huán)戊烷/環(huán)己烷/環(huán)辛烷/甲苯/乙苯/乙基環(huán)己烷體系的界面張力,測量的溫度范圍為40~120℃,壓力范圍為0.27~14.70 MPa。實驗數(shù)據(jù)見表1。并繪出實驗數(shù)據(jù)的標準差圖,結(jié)果如圖3所示。結(jié)果表明,所有數(shù)據(jù)的標準差均在0.36 mN/m以內(nèi),證明數(shù)據(jù)的準確性較好。其中,標準差的計算如式(3)所示

    圖2 80℃下CO2-正十一烷體系界面張力-壓力對比圖

    圖3 CO2-不同結(jié)構(gòu)(環(huán)烷烴/芳香烴)界面張力的標準差

    式中,s為數(shù)據(jù)的標準差;m為每個數(shù)據(jù)點測量的次數(shù),m=3;xi為每次測量得到的數(shù)據(jù)值,mN/m;xˉ為3次測量結(jié)果的平均值,mN/m。

    2.1壓力與溫度的影響

    為了說明溫度和壓力對測量體系界面張力數(shù)據(jù)的影響,繪出了界面張力隨壓力變化的等溫線,結(jié)果如圖4(a)~(f)所示。從圖4中可知,壓力對界面張力影響很大。溫度一定時,界面張力隨壓力近乎呈直線下降。這是因為:低壓下液體內(nèi)部主體分子對界面層分子的吸引力大,使得CO2-原油體系界面張力大。隨著壓力的升高,原油的密度會增加,CO2溶解度也會增加,但CO2溶解度的增加會導致原油密度的減小,二者作用平衡,使得原油的密度變化不大。而CO2的密度則會隨著壓力的升高而急速增加,使得其對界面層分子的作用增強,減小了界面層分子所受到的合力,從而使體系的界面張力減小。圖5給出了100℃時,CO2-甲苯體系液滴形狀隨壓力的變化趨勢,結(jié)果發(fā)現(xiàn),隨著壓力的升高,界面張力越來越小,使得液滴形狀越來越小,且逐漸變窄。

    表1 CO2-環(huán)烷烴/芳香烴組分的IFT值

    溫度對界面張力的影響比較復(fù)雜,首先溫度影響界面張力隨壓力的下降速度,隨著溫度的升高,界面張力下降速度越來越緩,使得不同等溫線在某個壓力范圍內(nèi)有交叉點;其次,不同區(qū)域內(nèi),溫度對界面張力的影響不同。在交叉點以上,界面張力隨溫度的升高而減小,而交叉點之下,界面張力隨溫度的升高而增大。為了分析溫度對CO2溶解度的影響,將Gibbs-Helmholtz方程計算的溶解度對溫度的導數(shù)與偏摩爾熵聯(lián)系起來,如式(4)~式(7)所示

    綜上所述,在較低壓力下,溫度的升高致使CO2的溶解度升高,溶解度的增加導致CO2-原油的界面張力降低。較高壓力下,CO2溶解度隨著溫度的升高而降低,因而界面張力在交叉點之后隨著溫度的升高而增大。

    圖4 CO2-不同結(jié)構(gòu)(環(huán)烷烴/芳香烴)界面張力的等溫線

    圖5 100℃時CO2-甲苯體系液滴形狀隨壓力的變化圖

    2.2碳數(shù)的影響

    為探究碳原子數(shù)對界面張力的影響,選取80℃下,CO2-環(huán)戊烷/環(huán)己烷/環(huán)辛烷體系與CO2-甲苯/乙苯體系分別進行研究比較。由圖6可以看出,對于CO2-形態(tài)結(jié)構(gòu)相同的環(huán)烷烴/芳香烴體系,界面張力隨著碳原子數(shù)的增加而增大,且下降趨勢大致相同。許多學者曾對CO2-正構(gòu)烷烴體系的變化規(guī)律進行研究,發(fā)現(xiàn)在同一溫度下,界面張力皆隨著鏈長的增加而增大。結(jié)果表明,CO2-形態(tài)結(jié)構(gòu)相同分子具有相同的規(guī)律。

    圖6 CO2-相似結(jié)構(gòu)(環(huán)烷烴/芳香烴)界面張力的等溫線

    2.3不同結(jié)構(gòu)的影響

    為探究相同碳原子數(shù)、不同結(jié)構(gòu)的影響,選取60℃下CO2-乙基環(huán)己烷/乙苯體系進行比較。由圖7可以看出,兩種體系的界面張力下降趨勢基本相同,但CO2-乙苯的界面張力略高于CO2-乙基環(huán)己烷體系。姬澤敏等、Nagarajan等曾對CO2-苯/環(huán)己烷體系的界面張力進行過測定,發(fā)現(xiàn)兩種體系界面張力隨壓力變化的等溫線幾乎重合,而CO2-乙基環(huán)己烷/乙苯體系界面張力差異明顯。從分子層面考慮,這是由于乙苯的極性比乙基環(huán)己烷大,從而導致乙苯分子間的相互作用更強,處于界面層的乙苯分子更難擴散到CO2中去,使得CO2-乙苯體系的界面張力大于CO2-乙基環(huán)己烷體系。

    圖7 60℃時CO2-乙苯/乙基環(huán)己烷界面張力對比

    2.4數(shù)據(jù)關(guān)聯(lián)

    2.4.1經(jīng)驗方程商巧燕曾提出了CO2-正構(gòu)烷烴界面張力的經(jīng)驗方程,將CO2-正構(gòu)烷烴二元體系的界面張力關(guān)聯(lián)為溫度、壓力、碳原子數(shù)的關(guān)系。為了更進一步分析分子結(jié)構(gòu)等對體系界面張力的影響,本文系統(tǒng)研究了CO2-多種烴類結(jié)構(gòu)(含正構(gòu)烷烴、環(huán)烷烴、芳香烴)的界面張力數(shù)據(jù),分析溫度、壓力、碳原子數(shù)以及分子結(jié)構(gòu)對界面張力的影響,在商巧燕提出的CO2-正構(gòu)烷烴界面張力的經(jīng)驗方程的基礎(chǔ)上,加入了偏心因子表達分子形狀,提出了CO2-正構(gòu)烷烴/環(huán)烷烴/芳香烴體系界面張力的經(jīng)驗公式。公式形式如下

    式中,t為溫度,℃;p為壓力,MPa;γ為界面張力,mN/m;N為碳原子數(shù);w為偏心因子;a、b、c、d、e、f、h、j為回歸參數(shù)。

    2.4.2實驗數(shù)據(jù)回歸及模型參數(shù)的求取本研究系統(tǒng)收集了文獻數(shù)據(jù),并將研究測定的實驗數(shù)據(jù),共計932個數(shù)據(jù)用于回歸,回歸所用數(shù)據(jù)見表2。回歸參數(shù)由最小二乘法得到,其目標函數(shù)如式(9)所示。采用平均相對偏差(AARD)和均方根誤差(RMSE)表示計算效果,如式(10)、式(11)所示。回歸結(jié)果見表3。

    表2 CO2-原油體系回歸數(shù)據(jù)匯總

    表3式(8)的回歸參數(shù)值

    式中,γexp代表實驗值;γcal代表計算值;n為數(shù)據(jù)點個數(shù)。

    用于擬合的全部數(shù)據(jù)中,86.4%的數(shù)據(jù)的平均相對偏差在20%以內(nèi)。界面張力小于5 mN/m時,偏差較大。式(8)對于CO2-正構(gòu)烷烴/芳香烴/不帶支鏈的環(huán)烷烴/芳香烴體系的擬合結(jié)果較好,對于CO2-帶支鏈環(huán)烷烴體系擬合結(jié)果相對較差。

    3結(jié)論

    本文采用懸滴法測定了CO2-環(huán)戊烷/環(huán)己烷/環(huán)辛烷/甲苯/乙苯/乙基環(huán)己烷的界面張力,測量范圍為40~120℃,0.27~14.70 MPa。探討了壓力、溫度、碳原子數(shù)以及分子結(jié)構(gòu)對界面張力的影響并提出了計算CO2-原油組分界面張力的經(jīng)驗方程。得出以下結(jié)論。

    (1)CO2密度隨著壓力的升高而增大,使得其對液體界面層的分子引力增大,從而降低界面層分子所受合力。因此,溫度一定時,CO2-原油組分界面張力隨壓力的升高而減小。

    (2)在較低壓力下,CO2溶解度隨溫度的升高而增大;在較高壓力下,趨勢相反。溶解度的增大會引起界面張力的減小。因此,溫度主要影響界面張力隨壓力下降的速度,隨著溫度的升高,界面張力的下降速度越來越緩慢。

    (3)具有相同形態(tài)結(jié)構(gòu)的原油分子-CO2體系,其界面張力變化規(guī)律相同,皆隨著碳數(shù)的增加而增大。

    (4)分子間作用力可影響界面張力的變化。物質(zhì)的分子間作用力增強,導致內(nèi)部主體分子的對界面層的引力增大,從而增大體系的界面張力。

    (5)對實驗所測以及文獻的數(shù)據(jù)進行了關(guān)聯(lián),其平均相對偏差為11.01%。結(jié)果表明,此經(jīng)驗方程可較好地用于CO2-正構(gòu)烷烴/環(huán)烷烴/芳香烴體系界面張力的計算。且與狀態(tài)方程結(jié)合密度梯度理論相比,無需相平衡數(shù)據(jù)及影響因子參數(shù),應(yīng)用更為簡便。可為今后計算多元組分界面張力提供支持。

    符號說明

    AARD——平均相對偏差

    de——懸滴最大直徑,m

    ds——距油滴頂點垂直距離為de處油滴截面直徑,m

    g——重力加速度,g=9.80 m/s2

    m——每個數(shù)據(jù)測量的次數(shù),m=3

    N——碳原子數(shù)

    n——數(shù)據(jù)點個數(shù)

    p——壓力,MPa

    psys——體系壓力,Pa

    R——氣體常數(shù),R=8.314 J/(mol·K)

    RMSE——均方根誤差

    s——數(shù)據(jù)的標準差

    T——體系溫度,K

    t——溫度,℃

    x2——氣體溶質(zhì)在飽和時的摩爾分數(shù)

    xi——測量得到的數(shù)據(jù)值,mN/m

    xˉ——3次測量結(jié)果的平均值,mN/m

    γ——界面張力,mN/m

    Δρ——兩相密度差,kg/m3

    下角標

    exp——實驗值

    cal——計算值



    壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗部分

    壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗結(jié)果與討論

    精品人妻伦九区久久AAA片69| 久久久久久久国产a∨| 国产精品久久久久久麻豆一区| 77777亚洲午夜久久多人| 久久综合九色综合久99| 亚洲一区中文字幕久久| 久久毛片免费看一区二区三区| 九九精品久久久久久噜噜| 久久国产劲暴∨内射| 九九久久精品国产| 国产精品无码久久综合网| 浪潮AV色综合久久天堂| 一本一本久久A久久综合精品| 麻豆网神马久久人鬼片| 99久久精彩视频| 久久天天躁夜夜躁狠狠躁2020| 久久99精品九九九久久婷婷| 欧美精品久久天天躁| 久久国产亚洲精品无码| 久久精品国产亚洲av四虎| 久久高潮一级毛片免费| 日本精品久久久久护士| 99久久人妻无码精品系列蜜桃| 久久久久久久岛国免费播放| 久久国产一区二区| 久久人妻少妇嫩草AV无码蜜桃| 国内精品久久久久影院蜜芽 | 久久人人爽爽人人爽人人片AV| 久久久久香蕉视频| 国产69久久精品成人看小说| 久久亚洲AV成人无码国产最大| 国产韩国精品一区二区三区久久| 人人狠狠综合久久88成人| 久久亚洲AV无码精品色午夜麻| 青青热久久综合网伊人| 久久精品国产99国产精偷| 99麻豆久久久国产精品免费| 久久精品国产99久久香蕉| 国产精品免费久久久久久久久| 伊人色综合久久天天人守人婷| 久久精品国产亚洲AV|