合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 不同溫度下手性離子液體及二元混合物的密度和表面張力(下)
> 表面活性劑復(fù)配對(duì)煤塵潤濕性的協(xié)同效應(yīng)研究
> 一體化生物復(fù)合乳液研制及在碳酸鹽巖體積加砂壓裂中的應(yīng)用(二)
> 基于界面張力和表面張力測(cè)試評(píng)估商用UV油墨對(duì)不同承印紙張的表面浸潤性差異(二)
> Delta-8 動(dòng)物胃腸道體內(nèi)中藥物的溶解度的測(cè)定——摘要、介紹
> 芬蘭Kibron表面張力測(cè)試儀跟蹤氯乙烯懸浮聚合中的表面張力變化情況
> 二氧化碳?xì)怏w保護(hù)焊表面張力過渡的解決辦法
> 座滴法測(cè)量玻璃熔體表面張力裝置、步驟
> 海洋環(huán)境表面活性物質(zhì)來源及對(duì)海洋飛沫氣溶膠數(shù)濃度、粒徑分布、理化性質(zhì)的影響(三)
> 柴油機(jī)尾氣顆粒物采樣濾紙稱重設(shè)計(jì),有效縮短微量天平的穩(wěn)定時(shí)間
推薦新聞Info
-
> 無機(jī)鹽濃度對(duì)HPAM不同復(fù)配體系降低界面張力能力的影響(二)
> 無機(jī)鹽濃度對(duì)HPAM不同復(fù)配體系降低界面張力能力的影響(一)
> 烷基二甲苯磺酸鹽表面活性劑界面張力、界面性能測(cè)定
> 不同溫度對(duì)氫氟醚HFE7000、HFE7200表面張力和黏度影響(二)
> 不同溫度對(duì)氫氟醚HFE7000、HFE7200表面張力和黏度影響(一)
> R1336mzz(Z))純質(zhì)與POE潤滑油組成的混合物的表面張力測(cè)定
> Sb合金元素對(duì)鋅液與X80鋼表面張力、潤濕性及界面反應(yīng)的影響——結(jié)果與分析
> Sb合金元素對(duì)鋅液與X80鋼表面張力、潤濕性及界面反應(yīng)的影響——實(shí)驗(yàn)
> 液氫、液氧等低溫推進(jìn)劑表面張力與內(nèi)角自流現(xiàn)象的關(guān)系
> 高沸點(diǎn)表面活性劑對(duì)納米LiBr溶液表面張力沸騰溫度的影響(下)
納米活性顆粒表面潤濕性測(cè)量方法及具體操作步驟
來源:中國石油大學(xué)(華東) 瀏覽 796 次 發(fā)布時(shí)間:2024-07-24
納米流體驅(qū)油作為低滲/特低滲油藏提高采收率的重要方法之一,利用具有小尺寸、高表面活性等特性的納米顆粒吸附到油水界面上,降低界面張力,改變油水兩相間力學(xué)作用,促進(jìn)油膜剝離。接觸角是表征納米顆粒表面潤濕性的重要參數(shù),在一定程度上決定了納米顆粒調(diào)控界面力學(xué)作用的能力。
目前,常規(guī)測(cè)量方法只能測(cè)量納米流體液滴整體在固體表面的接觸角,無法測(cè)量納米流體中單個(gè)納米顆粒的表面潤濕性,既而難以精確評(píng)價(jià)單個(gè)納米顆粒的表面性能對(duì)納米流體整體驅(qū)油性能的影響規(guī)律,從而無法揭示單個(gè)納米顆粒對(duì)油、水、巖石所組成多相界面的微觀調(diào)控機(jī)理。因此,亟需提出一種基于納米力學(xué)的活性顆粒表面潤濕性測(cè)量方法,實(shí)現(xiàn)對(duì)單個(gè)納米顆粒潤濕性的測(cè)量,為研究納米顆粒對(duì)油水界面的調(diào)控提供依據(jù)。
一種基于納米力學(xué)的活性顆粒表面潤濕性測(cè)量方法,具體包括以下步驟:
步驟1,選取活性顆粒,利用膠黏劑將活性顆粒粘合到原子力顯微鏡的Tipless探針懸臂上,制得球形探針,利用掃描電子顯微鏡觀察,獲取球形探針的半徑;
步驟2,選取原油樣品作為油相,將原油樣品滴在原子力顯微鏡的石英基底上形成油相界面后,利用液體探針夾固定球形探針,選取預(yù)先配制的模擬地層水作為水相,將模擬地層水注入原子力顯微鏡的O型圈所圍成的密閉區(qū)域內(nèi)形成水相界面,利用球形探針控制O型圈覆蓋在油相界面上,形成油水界面;
步驟3,利用原子力顯微鏡觀察確定油水界面位置后,控制球形探針下降,配合觀察油水界面,直至油水界面發(fā)生擾動(dòng)停止移動(dòng)球形探針,此時(shí)活性顆粒整體仍處于水相中且活性顆粒的底部剛剛觸碰到油水界面,得到第一界面體系,將球形探針靜置于第一界面體系中,待第一界面體系穩(wěn)定;
步驟4,控制球形探針繼續(xù)下降,當(dāng)活性顆粒部分浸入油相時(shí),記錄球形探針的下降高度并停止移動(dòng)球形探針,得到第二界面體系,將球形探針靜置于第二界面體系中,待第二界面體系穩(wěn)定;
步驟5,控制球形探針上升,當(dāng)活性顆粒完全脫離油水界面且活性顆粒整體處于水相時(shí),得到第三界面體系,記錄上升過程球形探針的受力情況得到作用力變化曲線,確定油相對(duì)活性顆粒的粘附力;
步驟6,對(duì)作用力變化曲線進(jìn)行積分,確定活性顆粒脫離油水界面時(shí)克服油相粘附力所做的粘附功,得到第三界面體系與第二界面體系之間的能量差;
步驟7,利用界面張力儀測(cè)量油相與水相之間的界面張力,基于Young方程,結(jié)合球形探針的半徑以及球形探針的下降高度,計(jì)算得到油-水-活性顆粒體系的接觸角,確定活性顆粒的表面潤濕性。
綜上可得,采用本方法利用原子力顯微鏡進(jìn)行納米力學(xué)測(cè)試,實(shí)現(xiàn)了對(duì)單個(gè)活性SiO2顆粒潤濕性的準(zhǔn)確測(cè)量,解決了活性顆粒潤濕性受納米流體性能影響難以精確表征的問題,為研究納米顆粒的改性效果提供了技術(shù)支持。