合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 表面活性劑是否對斥水性土壤的潤濕性有影響?——結(jié)論、致謝!
> 誘導(dǎo)期測定法研究NaCl的添加對碳酸鋰固-液界面張力等成核動(dòng)力學(xué)參數(shù)影響——過飽和度的計(jì)算
> 液體分布器設(shè)計(jì)與表面張力有何關(guān)聯(lián)之處
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對比(一)
> ?SDS、CTAC、APG表面活性劑對磷酸鹽粘結(jié)劑表面張力的影響研究
> 怎么吹出更大的泡泡?你需要懂得表面張力等知識(shí)
> 表面張力的意義,醇類在不同溫度下的表面張力測定數(shù)據(jù)
> 表面活性素制備、分離純化、溶液表面張力測定及膠束化行為研究(一)
> 納米顆粒間相互作用對界面張力的影響
> 便于調(diào)節(jié)的表面張力儀結(jié)構(gòu)組成及原理
推薦新聞Info
-
> 無機(jī)鹽濃度對HPAM不同復(fù)配體系降低界面張力能力的影響(二)
> 無機(jī)鹽濃度對HPAM不同復(fù)配體系降低界面張力能力的影響(一)
> 烷基二甲苯磺酸鹽表面活性劑界面張力、界面性能測定
> 不同溫度對氫氟醚HFE7000、HFE7200表面張力和黏度影響(二)
> 不同溫度對氫氟醚HFE7000、HFE7200表面張力和黏度影響(一)
> R1336mzz(Z))純質(zhì)與POE潤滑油組成的混合物的表面張力測定
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應(yīng)的影響——結(jié)果與分析
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應(yīng)的影響——實(shí)驗(yàn)
> 液氫、液氧等低溫推進(jìn)劑表面張力與內(nèi)角自流現(xiàn)象的關(guān)系
> 高沸點(diǎn)表面活性劑對納米LiBr溶液表面張力沸騰溫度的影響(下)
影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(一)
來源:河北大學(xué)學(xué)報(bào)(自然科學(xué)版) 瀏覽 125 次 發(fā)布時(shí)間:2025-04-18
氫鍵流體在自然界中廣泛存在,并在生物、化學(xué)化工、物理、超分子和晶體工程等領(lǐng)域中有著重要應(yīng)用。氫鍵流體除了具有一般流體的近程有序和遠(yuǎn)程無序的特征外,同時(shí)是較為復(fù)雜的非均相流體系統(tǒng)。在氫鍵流體中,質(zhì)子給體和受體的數(shù)目以及氫鍵的鍵能將影響氫鍵流體的相關(guān)特征。氫鍵的存在致使體系中存在著大量具有一定尺寸分布的氫鍵簇合物,這些簇合物對氫鍵流體的相態(tài)結(jié)構(gòu)、沸點(diǎn)、表面張力、介電常數(shù)以及比熱等物理化學(xué)性質(zhì)有著重要影響。
近年來,多孔材料獨(dú)特的結(jié)構(gòu)和吸附特性使得其在很多領(lǐng)域有著廣泛的應(yīng)用。自然界中大量多孔介質(zhì)通常具有狹縫形狀的孔道結(jié)構(gòu),如石墨的片層結(jié)構(gòu)以及巖石的解離結(jié)構(gòu)等都可以通過狹縫模型予以處理。由于狹縫表面與流體分子之間的相互作用對受限流體的結(jié)構(gòu)與熱力學(xué)性質(zhì)有著顯著的影響,因而當(dāng)狹縫的側(cè)壁兩側(cè)與流體分子之間的相互作用不同時(shí),流體的界面張力等物理化學(xué)性質(zhì)與體相有顯著差別。在分子間作用與狹縫外勢的共同作用下,受限流體會(huì)產(chǎn)生一系列不同于體相的相行為及界面特征。因此,狹縫間流體的吸附~脫附、溶劑化及其界面張力等性質(zhì)的相關(guān)研究已經(jīng)引起了學(xué)者們的廣泛研究興趣。
本文利用密度泛函理論研究了受限于對稱性破缺狹縫間氫鍵流體的吸附~脫附現(xiàn)象,旨在為揭示受限空間中氫鍵流體的相態(tài)特征及界面性質(zhì)提供可能的理論線索。研究主要針對受限于對稱性破缺程度不同狹縫間的A2D2型氫鍵流體而進(jìn)行(符號(hào)A2D2表示一個(gè)同時(shí)含2個(gè)質(zhì)子受體和2個(gè)質(zhì)子給體的分子),通過計(jì)算其吸附~脫附等溫線以及巨勢的變化情況得到氫鍵流體的界面張力,進(jìn)而考察了氫鍵作用、對稱性破缺程度及狹縫間距等相關(guān)因素對體系界面性質(zhì)的影響。
1狹縫中氫鍵流體的密度泛函理論
經(jīng)典流體的密度泛函理論因其具有精確度高、結(jié)構(gòu)明晰、計(jì)算量小等優(yōu)點(diǎn),現(xiàn)已被廣泛用于在介觀尺度下研究流體的相關(guān)物理化學(xué)特征。經(jīng)典流體密度泛函理論的基礎(chǔ)在于構(gòu)造體系的巨勢泛函,進(jìn)而通過巨勢泛函最小化得到體系的平衡密度分布。自20世紀(jì)末以來,Rosenfeld所提出的基于硬球相互作用的基本度量理論(fundamental measure theory,簡稱FMT)以及由吳建中和于養(yǎng)信、Roth等所提出的改進(jìn)基本度量理論(MFMT)已經(jīng)引起了學(xué)者們的廣泛興趣,目前已經(jīng)成為相關(guān)研究的基礎(chǔ)。
對處于給定外勢Vext(r)中且化學(xué)勢為μ的流體分子,經(jīng)典流體的密度泛函理論給出體系以局域密度n(r)為泛函變量的巨勢函數(shù)Ω[n(r)]形式如下:
式中F[n(r)]為流體內(nèi)稟的Helmholtz自由能,由理想和過量2部分構(gòu)成:
在微擾論的框架下,體系的過量自由能Fex[n(r)]可被表示為硬球、色散和氫鍵作用3部分的貢獻(xiàn)之和,形式如下:
Fhs[n(r)]表示分子間硬球相互作用對自由能的貢獻(xiàn),可由基本度量理論和改進(jìn)的基本度量理論給出[13-15]
其中的物理量Φ=Φ1+Φ2+Φ3,且Φ1,Φ2和Φ3分別如下:
其中加權(quán)密度nα(r)與相應(yīng)的權(quán)重函數(shù)[13]ωα(r-r′)和流體分子的尺度(直徑為σ)密切相關(guān),定義如下:
這些物理量直接與硬球的基本幾何測度相關(guān)[13].
在平均場近似之下,方程(3)中流體色散部分的自由能Fdis[n(r)]可表示為
式中Vdis(|r-r′|)描述了位于r和r′處分子間的相互作用勢。在計(jì)算具體過程中,根據(jù)WCA近似[19]將Vdis(r)以截?cái)嗟腖ennard-Jones(LJ)勢給出。進(jìn)而分子間色散部分的相互作用勢可以寫作
其中r為流體分子間距,r0為截?cái)喟霃剑ㄒ话氵x取r0=2.5σ),ε為分子間色散作用能。
對于A2D2型氫鍵流體而言,氫鍵作用的自由能Fhb[n(r)]可根據(jù)前文有關(guān)結(jié)果[20-21]給出
上式中εhb代表氫鍵鍵能的負(fù)值,υ為氫鍵的成鍵體積參數(shù),ghs(n(r))則表示參考態(tài)硬球流體的徑向分布函數(shù)[18].
其中nb為氫鍵流體的體相分子數(shù)密度,μb為氫鍵流體過量部分的化學(xué)勢。
根據(jù)流體分子間的相互作用,可將過量化學(xué)勢μb表示為μb=μhs+μdis+μhb,其中μhs,μdis和μhb分別為體相流體硬球、色散和氫鍵3部分作用相應(yīng)的化學(xué)勢,分別為[21]:
狹縫中氫鍵流體的密度分布及體系外勢僅與流體分子質(zhì)心與狹縫表面的垂直距離(z方向)有關(guān),亦即n(r)=n(z)。對于受限于間距為H存在著對稱性破缺的狹縫中的氫鍵流體而言,體系的外勢Vext(z)可以表示為
其中qs為介于0——1的數(shù)值。顯然,參數(shù)qs表示因兩側(cè)狹縫材質(zhì)不同引起的體系對稱性破缺程度,當(dāng)qs=1時(shí)意味著體系沒有發(fā)生對稱性破缺。狹縫分子與流體分子間的相互作用V(z)可通過10-4-3勢表示:
方程中εw表征流體分子與腔壁分子間的相互作用能量,參數(shù)σw和Δ一般分別選作σw=σ及Δ=0.7071σ.