合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 降低表面張力,可提高天然氣水合物的生長速率
> 甜菜堿型兩性表面活性劑與有機膦酸鹽防垢復配,有效降低樁西原油體系油-水動態(tài)界面張力
> 聚氧乙烯鏈長度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(二)
> 干濕循環(huán)試驗:不同表面張力下土壤裂隙的發(fā)展演化機理(二)
> 水相PH、鹽濃度對380號燃料油油水界面張力的影響
> 如何理解“表面張力”這一概念?
> 超親水超疏油復合網(wǎng)膜的制備及其油水分離性能研究
> 納米顆粒間相互作用對界面張力的影響
> 單一表面活性劑在活性劑CMT焊接中的作用機理
> 低界面張力起泡劑的泡沫性能、用量對發(fā)泡量、半衰期的影響
推薦新聞Info
-
> 無機鹽濃度對HPAM不同復配體系降低界面張力能力的影響(二)
> 無機鹽濃度對HPAM不同復配體系降低界面張力能力的影響(一)
> 烷基二甲苯磺酸鹽表面活性劑界面張力、界面性能測定
> 不同溫度對氫氟醚HFE7000、HFE7200表面張力和黏度影響(二)
> 不同溫度對氫氟醚HFE7000、HFE7200表面張力和黏度影響(一)
> R1336mzz(Z))純質(zhì)與POE潤滑油組成的混合物的表面張力測定
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應(yīng)的影響——結(jié)果與分析
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應(yīng)的影響——實驗
> 液氫、液氧等低溫推進劑表面張力與內(nèi)角自流現(xiàn)象的關(guān)系
> 高沸點表面活性劑對納米LiBr溶液表面張力沸騰溫度的影響(下)
低界面張力納米流體提高低滲透油藏壓裂滲吸速率和采收率(三)
來源:油田化學 瀏覽 716 次 發(fā)布時間:2024-12-06
2.5低張力納米流體的滲吸采收率
為了研究滲吸過程中的驅(qū)動力,Schechter推導了毛管數(shù)和重力比的宏觀參數(shù),即反邦德數(shù)NB-1:
式中:σ—油水界面張力,mN/m;φ—多孔介質(zhì)的孔隙度,%;K—多孔介質(zhì)的滲透率,10-3μm2;Δρ—油水密度差,g/cm3;H—多孔介質(zhì)的高度,cm;C—與多孔介質(zhì)的幾何尺寸有關(guān)的常數(shù),圓形毛細管為0.4。
NB-1為滲吸機理判別參數(shù),式中沒有考慮巖石潤濕性。NB-1>5時,毛管力在滲吸作用中起主導作用;1<NB-1<5時,重力和毛管力同時起作用;NB-1<<1時,重力起主導作用。
為驗證TPHS活性納米流體在滲吸采收率的應(yīng)用,采用靜態(tài)滲吸實驗開展TPHS及常見表面活性劑復配溶液滲吸效果對比研究,巖心的基本物性參數(shù)見表2,不同體系與原油間的界面張力、所計算的反邦德數(shù)和滲吸采收率結(jié)果見表3,結(jié)果表明在滲吸過程中毛管力起主導作用。
表2巖心物性參數(shù)
表3不同滲吸體系的滲吸采收率
親油性巖石發(fā)生滲吸的前提條件是潤濕性反轉(zhuǎn),使毛管力的方向與水的吸入方向相同。J-11巖心實驗中重力和毛管力同時起作用,放入巖心后不出油,滲吸液一直呈渾濁狀態(tài),直至一年后才開始出油。其余5組實驗中毛管力起主導作用,S-12巖心滲吸過程呈逆向滲吸的特點,滲吸開始后巖心介質(zhì)表面有油滴析出,油滴較小并有拉絲現(xiàn)象,油滴主要集中在側(cè)面,在12 h后巖心頂部有大量油滴析出,且體積較大。S-1巖心滲吸過程中,只有巖心頂部有油滴析出,油滴體積較大。J-3巖心在滲吸過程中以順向滲吸為主,主要是巖心頂部緩慢出油;J-16巖心在滲吸過程中,出油情況與S-12巖心相似。5組活性納米流體實驗中,4組實現(xiàn)了出油。對于親油巖心發(fā)生滲吸的前提條件是潤濕性的改變,因此實驗證明活性納米流體能夠改變親油巖心的潤濕性,最終采收率大致隨著反邦德數(shù)增加而降低。
Zhang等通過對油水黏度取幾何平均、考慮巖心大小、形狀和邊界條件,給出特征長度LC的計算方法,Ma等基于特征長度LC定義了無因次時間td:
式中:t—滲吸采收時間,min;K—多孔介質(zhì)的滲透率,μm2;—多孔介質(zhì)孔隙度,1;μw—水的黏度,mPa·s;μo—油的黏度,mPa·s;LC—巖心的特征長度,在實驗條件下用巖心長度L和直徑D表示為
通過靜態(tài)滲吸實驗對比了不同滲吸配方體系在無因次時間條件下的滲吸采收率,如圖5所示,圖中斜率越大,表明水潤濕性越強。課題組前期研究發(fā)現(xiàn),不同類型的表面活性劑體系的滲吸采收率不同,陽離子雙子表面活性劑12-2-12對巖心表面油潤濕,在實驗周期內(nèi)不出油,1年后才出油;以兩性甜菜堿表面活性劑C12BE為主的滲吸配方體系使得巖心J-3表現(xiàn)為中性潤濕;以陰非離子表面活性劑TPHS和AEC為主的滲吸配方體系使得巖心水潤濕,采收率較高。以合成的陰非離子表面活性劑TPHS為主的滲吸配方體系具有最快的滲吸采油速率和最高的采收率。
圖5低張力納米流體滲吸體系在大慶低滲天然巖心中的采收率
通過J-13巖心與S-12巖心滲吸實驗的對比,由于低滲巖心滲吸較慢,在滲吸實驗的時間內(nèi),納米SiO2粒子的加入能夠提高采收率4.47%,其原理是納米粒子與表面活性劑的潤濕協(xié)同作用。納米流體加入后滲吸采油速率更快。Wasam院士認為根據(jù)分離壓驅(qū)油機理,納米粒子處在油/水/巖石三相鍥形界面處,低張力納米流體在鋪展流體邊界形成類似固體的有序組合體,在本體溶液中形成液體的分子有序組合體;低張力納米流體在油/水/巖石三相鍥形界面處形成二維層狀自組裝體,這種自組裝結(jié)構(gòu)形成了垂直于油水界面的高于納米溶液本體的結(jié)構(gòu)分離壓;納米流體界面沿著油滴和巖石剝離的方向移動,最終使得油滴從巖石表面脫附。
2.6低張力納米流體的強制滲吸驅(qū)油實驗
采用兩組長填砂管(孔隙度均為45.50%,滲透率均為700×10-3μm2,含油飽和度約60%)實驗對比了在低速驅(qū)替條件下的驅(qū)油體系0.1%TPHS+0.2%AOS和0.1%TPHS+0.2%AOS+0.05%納米SiO2的驅(qū)油效率,結(jié)果見圖6。在強制滲吸驅(qū)油過程中浮力、黏滯力和毛管力起作用;驅(qū)油過程可以描述為:初始階段是浮力起主導作用;隨著時間推移,采油速率降低并且達到平衡,這時浮力大小與毛管力與黏滯力的和相等,停止出油。圖中的含水率變化反映了油墻的突破和聚集;滲吸驅(qū)油實驗采用二次采油方式,在實驗條件相同注入量下,加入納米顆粒的低張力納米流體的驅(qū)油效率為75.1%,低張力表面活性劑體系的驅(qū)油效率為62.4%,納米顆粒加入后表面活性劑體系的驅(qū)油效率增加了12.7%;低張力表面活性劑在注入量0.27 PV時水驅(qū)前緣突破(見水),而低張力納米流體在注入量0.4 PV時才突破見水;加入納米顆粒后,延遲了無水采油時間。含有納米顆粒的驅(qū)油體系的采出液有明顯的乳化現(xiàn)象,提高了驅(qū)替液的流度,納米顆粒和表面活性劑在驅(qū)替前緣形成的Pickering乳液穩(wěn)定了油墻,延遲了水驅(qū)突破。
圖6低張力納米流體的強制滲吸驅(qū)油效率對比
3結(jié)論
采用“一鍋煮”法合成了一種陰非離子表面活性劑TPHS,具有合成時間短、產(chǎn)率高的特點,能夠有效降低油水界面張力,并具有優(yōu)良的耐溫抗鹽能力。
陰非離子表面活性劑TPHS與陰離子表面活性劑AOS復配后,與原油間的界面張力達到更低的10-2數(shù)量級,且具有更高的濁點,拓寬了應(yīng)用范圍。
少量納米SiO2顆粒與TPHS、AOS復配即可產(chǎn)生潤濕協(xié)同作用,提高滲吸速率和采收率,并能形成乳液穩(wěn)定油墻,延長無水采油期。